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Abstract. A two-dimensional decoupling theory is developed when colored noise is included in a nonlinear
dynamical system. By a functional analysis, the colored noise is transformed to an effective noise that
includes the noise correlation time, the mean dynamical variable, and the original noise strength. When
the two-dimensional decoupling theory is applied to single-mode and two-mode dye laser systems, the
mean, variance, and effective eigenvalue of laser intensity are calculated. Excellent agreement between
theoretical analysis, numerical simulations, and experimental measurements are obtained. It is seen that
the increase of noise correlation time can reduce the fluctuations in the laser system. It is also shown that
there is relatively large fluctuation in the phase when the laser undergoes from thermal light to coherent
light when the theory is applied to a single mode dye laser.

PACS. 05.40.Ca Noise – 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps

1 Introduction

Nonlinear dynamical systems with random noise have
been paid much attention both theoretically and exper-
imentally [1–27]. Phenomena such as noise-induced tran-
sitions [1,2], stochastic resonance [3,4], resonant activa-
tion [5,6], noise-induced spatial patterns [8,9] are a few
examples of extensive investigations. The effects of col-
ored noise in non-equilibrium systems have attracted a
great deal of interests for many years [10–27]. Some of the
original studies made use of two-dimensional phase mea-
surements and Fokker-Planck theories with application of
them [13–18]. Realistically, noise appears usually not only
in one-dimensional systems but also in high-dimensional
systems.

In this paper, a two-dimensional decoupling theory is
developed when multiplicative colored noise is included
in a nonlinear system. In Section 2, a two-dimensional
Langevin equation with both colored and white noises is
presented. By a functional analysis, the colored noise is ap-
proximately by an effective white noise. In Section 3, the
two-dimensional decoupling theory is applied to a single-
mode dye laser system. The mean, variance, and effective
eigenvalue of the laser intensity are calculated analytically
and compared to numerical simulations and experimental
measurements [22,23]. In Section 4, the variance of the
phase and the power spectrum of laser field are calcu-
lated. The effects of colored noise correlation time on the
variance of laser intensity, phase and power spectrum are
discussed. In Section 5, the two-dimensional decoupling
theory is applied to a two-mode dye laser system. The
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mean, variance and effective eigenvalue of the laser inten-
sity are calculated analytically and compared to experi-
mental measurements [22,23]. A discussion of the theory
concludes the paper.

2 Two-dimensional decoupling theory

A two-dimensional stochastic system with both colored
and white noises follows the Langevin equation

dx
dt

= h (x) + g (x) · ξ (t) + G (x) · η (t) (1)

where h (x) is the deterministic part, g (x) and G (x) are
diagonal matrices, ξ (t) and η (t) are colored and white
noise. The noise terms are statistically independent and
their mean and variance are given by

〈ξ (t)〉 = 〈η (t)〉 = 0

〈ξ (t) · ξ (t′)〉 = (b/τ) exp (− |t− t′| /τ)

〈η (t) · η (t′)〉 = 2cδ (t− t′) (2)

where b and c are the colored and white noise strengths,
τ is the noise correlation time. Equation (1) can also be
explicitly written as[

dx1/dt
dx2/dt

]
=
[
h1 (x)
h2 (x)

]
+
[
g11 (x) 0
0 g22 (x)

][
ξ1 (t)
ξ2 (t)

]
+
[
G11 (x) 0
0 G22 (x)

][
η1 (t)
η2 (t)

]
· (3)
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Since the random force ξ (t) is NOT a white noise but
a colored noise with finite correlation time τ , equation (3)
is no longer a Markov process. Though the corresponding
Fokker-Planck equation of the probability density Q (x, t)
of the variable x can be written in the form of [28]

∂Q (x, t)
∂t

= −
2∑
i=1

∂

∂xi

{
hi (x)Q (x, t)− 1

2
gii (x)

×〈ξi (t) δ[x (t)− x]〉 − c

2
Gii (x)

∂

∂xi
[Gii (x)Q (x, t)]

}
(4)

it is difficult to solve the above equation since the col-
ored noise term ξ (t) involved in equation (4). By intro-
ducing the approximation method of the decoupling the-
ory [19,20], the non-Markov process can be reduced to
Markov process. The main idea of decoupling theory is
to transform the colored noise ξ (t) to an effective white
noise. The intensity of the effective noise includes the noise
correlation time τ , the mean of the dynamical variable x
and the original noise strength b. By a functional analysis,
one has [19,20]

〈ξi (t) δ[x (t)− x]〉 =
∫ t

0

dt′〈ξ (t) · ξ (t′)〉
〈δ{δ[x (t)− x]}

δξi

〉
=

b

τ

∫ t

0

dt′ exp [−|t− t′|/τ ]
〈
δ[x (t)− x]

δx (t)
δξi

〉
=
b

τ

∂

∂xi

(
gii (x)

∫ t

0

dt′ exp
[
−|t− t

′|
τ

]

×
〈
δ[x (t)− x] exp

{
2∑
j=1

∫ t

t′
ds
[
h

(j)
j (x (s))

+ g
(j)
jj (x (s)) ξj (s) +G

(j)
jj (x (s)) ηj (s)− |g (x (s))|(j)

|g (x (s))|

× [hj (x (s)) + gjj (x (s)) ξj (s) +Gjj (x (s)) ηj (s)]

}〉)

≈ b

τ

∂

∂xi

(
gii (x)

∫ t

0

dt′ exp
[
−|t− t

′|
τ

]
〈δ[x (t)− x]〉

× exp

{
(t− t′)

2∑
j=1

[〈
h

(j)
j

〉
−
〈
|g (x)|(j)

|g (x)| hj (x)

〉]})

= beff
∂

∂xi
[gii (x)Q (x, t)] (5)

where Q (x, t) = 〈δ [x (t)− x]〉 and all the terms multi-
plied by ξi (t) and ηi (t) have been neglected. The effective
colored noise strength beff is given by

beff =
b

1− τ
2∑
j=1

[〈
h

(j)
j (x)

〉
−
〈
|g(x)|(j)
|g(x)| hj (x)

〉] (6)

with

h
(j)
j (x) =

∂hj (x)
∂xj

, and |g (x)|(j) =
∂

∂xj
[g11 (x) g22 (x)]

(7)

and the angular brackets 〈· · ·〉 denotes the steady state
average value of the quantity.

Thus the Fokker-Planck equation (4) can be trans-
formed to

∂Q (x, t)
∂t

= −
2∑
i=1

∂

∂xi

{
hi (x)Q (x, t)

− beff

2
gii (x)

∂

∂xi
[gii (x)Q (x, t)]

− c
2
Gii (x)

∂

∂xi
[Gii (x)Q (x, t)]

}
(8)

where beff is given by equation (6).

3 Application to single mode dye laser

The complex electric field E of a single mode dye laser
with both colored and white noises and full saturation
effects follows the Langevin equation

dE
dt

=

(
−K +

F

1 +A |E|2 /F

)
E +Ep (t) + q (t) (9)

where K is the cavity decay constant, F is the gain pa-
rameter with F = K+a0, a0 is the pump parameter, A is
the self saturation coefficient. The multiplicative colored
noise p (t) and additive white noise q (t) are statistically
independent and their mean and variance are given by

〈p (t)〉 = 〈q (t)〉 = 0

〈p∗ (t) p (t′)〉 = (P ′/τ) exp
(
−|t− t

′|
τ

)
〈q∗ (t) q (t′)〉 = 2Pδ (t− t′) (10)

where P ′ and P are the strength of colored and white
noises, τ is the colored noise correlation time.

In the polar coordinates with E = reiθ, p = p1 + ip2,
and q = q1 + iq2, equation (9) is stochastically equivalent
to the following Langevin equation[

dr
dt
dθ
dt

]
=

[(
−K + F

β

)
r + P

2r

0

]
+
[
r 0
0 1

][
p1

p2

]
+
[

1 0
0 1
r

][
q1
q2

]
(11)

with β = 1 + (Ar2/F ).
According to equations (6, 7), the effective colored

noise strength in a single mode dye laser is given by

P ′eff =
P ′〈I〉

τP + 〈I〉 (1 + 2τA〈I〉/β2
s )

(12)
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where

〈I〉 =
〈
r2
〉
, βs = 1 +A 〈I〉 /F. (13)

Then the corresponding Fokker-Planck equation of the
probability density function Q (r, θ; t) can be written as

∂Q (r, θ; t)
∂t

= − ∂

∂r

{[(
−K +

F

β

)
+

1
2r2

(
P + P ′effr

2
)]

× rQ (r, θ; t)− 1
2
∂

∂r

(
P + P ′effr

2
)
Q (r, θ; t)

}
+

1
2r2

(
P + P ′effr

2
) ∂2Q (r, θ; t)

∂θ2
(14)

where P ′eff is given by equation (12).
If the probability density function Q (r, θ; t) can be

written as Q (r, t)Φ (θ, t), equation (14) can be separated
into two parts of amplitude r and phase θ as follows

∂Q (r, t)
∂t

= − ∂

∂r

{[(
−K +

F

β

)
+

1
2r2

(
P + P ′effr

2
)]

× rQ (r, t)− 1
2
∂

∂r

[(
P + P ′effr

2
)
Q (r, t)

]}
(15)

and

∂Φ (θ, t)
∂t

≈ 1
2

(
P

〈I〉 + P ′eff

)
∂2Φ (θ, t)
∂θ2

(16)

where P/r2 is approximated by P/〈I〉 with I = r2.
By a straightforward calculation, the steady state so-

lution of equation (15) is given by

Qs (r) = N0r

(
1 +

P ′effr
2

P

)β0−α0 (
1 +

Ar2

F

)−β0

(17)

where N0 is the normalization constant, and

α0 =
K

P ′eff

+ 1, β0 =
F 2

(FP ′eff −AP )
· (18)

Then the mean 〈I〉, variance λ2I (0) and the effective
eigenvalue λeff of the steady state laser intensity can be
easily calculated from equation (17) with [23]

〈In〉 =
∫ ∞

0

r2nQs (r) dr, (19)

λ2I (0) =

〈
I2
〉

〈I〉2
− 1 (20)

and

λeff =
2P 〈I〉
〈I2〉 − 〈I〉2

· (21)

To match the experimental measurements and check the
accuracy of the decoupling theory, numerical simulation is
performed by integrating the differential equations (9, 10).
The stationary distribution function Qs (r) is constructed
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Fig. 1. The intensity variance λ2I (0) and effective eigenvalue
λeff of the single-mode dye laser as a function of the average in-
tensity 〈I〉 where λ2I (0) , λeff , and 〈I〉 are dimensionless. The
parameters are obtained from references [22,23] and in dimen-
sionless unit: K = 5000, P ′ = 300, P = 1, A = 1, τ = 0.2.
(• • •) Experimental measurements [22,23]; (− − −) numeri-
cal simulations; (—) predictions of decoupling theory of equa-
tions (20, 21). (a) λ2I (0); (b) λeff .

and the variance of the intensity λ2I (0) and the effective
eigenvalue λeff are calculated numerically.

The theoretical predictions of equations (20, 21), the
numerical simulations of equations (9, 10), together with
experimental measurements from references [22,23] of the
variance λ2I (0) and effective eigenvalue λeff of the mean
dye laser intensity 〈I〉 are compared in Figure 1. The re-
sults from decoupling theory give slightly lower values in
λ2I (0) and slightly higher values in λeff when the laser
is operated well below threshold. When the laser is oper-
ated near to above threshold, the results from decoupling
theory, numerical simulations and experimental measure-
ments are almost identical. It is clear that very good
agreement between theoretical analysis of the decoupling
theory, numerical simulations and experimental measure-
ments is obtained.

4 Effects of noise correlation time

The effects of non-zero noise correlation time τ on the
intensity and phase fluctuations can be quantitatively in-
vestigated through equations (16, 17).
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Fig. 2. The intensity variance λ2I (0) and effective eigen-
value λeff of the single-mode dye laser as a function of the
average intensity 〈I〉 for different values of the noise corre-
lation time τ where λ2I (0) , λeff , 〈I〉, and τ are dimension-
less. The parameters are dimensionless and chosen as follows:
K = 1000, P ′ = 100, P = 1, A = 1. (—) τ = 0.0; (− − −)
τ = 0.2; (− · −) τ = 0.5. (a) λ2I (0); (b) λeff .

4.1 Intensity fluctuation

The intensity fluctuation λ2I (0) and the effective eigen-
value λeff as a function of the mean laser intensity 〈I〉
are plotted in Figure 2 for different values of the noise
correlation time τ . From Figure 2a, it is clear that the in-
tensity variance λ2I (0) decreases as the noise correlation
time τ increases. The peak in λ2I (0) is shifted from well
below threshold to near threshold as τ increases. From
Figure 2b, it is seen that the curve of the effective eigen-
value λeff is like “U” shape when the multiplicative noise
is white with correlation time τ = 0. While for non-zero τ ,
the curve of λeff is like “L” shape. The effective eigenvalue
λeff decreases quickly when the laser is operated well below
threshold. The curve of λeff becomes flat with a long flat
tail when laser is operated well above threshold for non-
zero values of τ . It is obvious that increasing the value of
the noise correlation time τ can reduce the fluctuation in
the dye laser system. This means that the noise color can
suppress the fluctuations in nonlinear dynamical system.

4.2 Phase diffusion

The effects of colored noise on the phase fluctuation of a
dye laser can also be investigated through equation (16).

0

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0

10
2

10
1

10
0

10
-1

10
-2

(a)

<I>

λ
2

θ(
0
)

(b)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

(10
6
s

-1
)

S
( ω

)

ω − ω
0

Fig. 3. The phase variance λ2θ (0) and the power spectrum
S (ω) of the single-mode dye laser field for different values of
the noise correlation time τ where λ2θ (0) , S (ω), and τ are
dimensionless. The parameters are dimensionless and chosen
as follows: K = 1000, P ′ = 100, P = 1, A = 1. (—) τ = 0.0;
(− − −) τ = 0.2; (· · ·) τ = 1.0. (a) λ2θ (0) with t = 1.0; (b)
S (ω) with a0 = 200.

Equation (16) is a one-dimensional diffusion equation with
a solution [29]

Φ (θ, t) =

√
〈I〉

2π (P + P ′eff 〈I〉) t
exp

[
− θ2 〈I〉

2 (P + P ′eff 〈I〉) t

]
·

(22)

The variance of the phase variable θ and the power spec-
trum of the dye laser field can be calculated from equa-
tion (22). The variance λ2θ (0) of the phase θ is given by

λ2θ (0) =
〈
θ2
〉
− 〈θ〉2 =

(
P

〈I〉 + P ′eff

)
t. (23)

The power spectrum S (ω) is given by

S (ω) =
P ′eff + P/〈I〉

2π
[
(ω − ω0)2 + 1

4

(
P
〈I〉 + P ′eff

)2
] (24)

where P ′eff is given by equation (12).
The variance λ2θ (0) of the phase and the power spec-

trum S (ω) of the dye laser field are plotted in Figure 3
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as a function of the mean laser intensity 〈I〉 for different
values of noise correlation time τ .

From Figure 3a, it is seen that λ2θ (0) decreases mono-
tonically with a long flat tail as 〈I〉 increases for white mul-
tiplicative noise with τ = 0. When τ increases, λ2θ (0) de-
creases for small values of 〈I〉. After it reaches a minimum
value, λ2θ (0) increases to a peak and then decreases to
zero as 〈I〉 increases further. The height between the min-
imum and maximum in λ2θ (0) decreases as τ increases.
The peak in λ2θ (0) is located near laser threshold. This
means that large fluctuation appears in the phase when
the laser undergoes from thermal light to coherent light.
When 〈I〉 increases further, λ2θ (0) tends to zero. This
means that the phase fluctuation dies out for very large
laser intensity 〈I〉.

Figure 3b is a plot of the power spectrum S (ω). It is
seen that S (ω) is Lorentzian shape and decreases mono-
tonically as the angular frequency (ω − ω0) increases. The
power spectrum S (ω) decreases as the noise correlation
time τ increases.

5 Application to two-mode dye laser

It is not surprising that the two-dimensional decoupling
theory can be successfully applied to a single-mode dye
laser and predict the phase properties of the laser, since
the one-dimensional decoupling theory already gave excel-
lent results for the fluctuation of a single mode dye laser
intensity [24–27]. However, when the two-dimensional de-
coupling theory is applied to a two-mode dye laser system,
it can give very nice theoretical predictions for the laser in-
tensity auto-correlation function and effective eigenvalue.

The complex electric fields E1 and E2 of a two-mode
dye laser with both colored and white noise follow the
Langevin equation

dE1

dt
= a1E1 −A |E1|2E1 − ξ |E2|2E1 +E1p (t) + q1 (t)

dE2

dt
= a2E2 −A |E2|2E2 − ξ |E1|2E2 +E2p (t) + q2 (t)

(25)

where ξ = 2 is the mode coupling constant for the two-
mode dye laser. The multiplicative colored noise p (t) and
additive white noise qi (t) are statistically independent and
their mean and variance are given by

〈p (t)〉 = 〈qi (t)〉 = 0

〈p∗ (t) p (t′)〉 = (P ′/τ) exp
(
−|t− t

′|
τ

)
(i, j = 1, 2)

〈q∗i (t) qj (t)〉 = 2Pδijδ (t− t′) (26)

where P ′, P and τ have the same meaning as that in equa-
tion (10).

In the polar coordinates with E1 = r1eiφ1 , E2 =
r2eiφ2 , p = pr + ipi, q1 = q1r + iq1i, and q2 = q2r + iq2i,
equation (25) is stochastically equivalent to the following

Langevin equations[
dr1
dt

dr2
dt

]
=

[
a1r1 −Ar3

1 − ξr2
2r1 + P

2r1

a2r2 −Ar3
2 − ξr2

1r2 + P
2r2

]
+
[
r1 0
0 r2

][
p1r

p2r

]
+
[

1 0
0 1

][
q1r
q2r

]
· (27)

According to equations (6, 7), the effective colored noise
strength in a two-mode dye laser is

P ′eff =
〈I1〉 〈I2〉P ′

〈I1〉 〈I2〉+ τ (2A 〈I1〉 〈I2〉+ P ) (〈I1〉+ 〈I2〉)
(28)

where 〈I1〉 =
〈
r2
1

〉
, and 〈I2〉 =

〈
r2
2

〉
.

Then the corresponding Fokker-Planck equation of the
probability density function Q (r1, r2; t) can be written
as [28]

∂Q

∂t
= − ∂

∂r1

{(
a1r1 −Ar3

1 − ξr2
2r1 +

P

2r1
+
P ′eff

2
r1

)
Q

− ∂

∂r1

[
1
2
(
P + P ′effr

2
1

)
Q

]}
− ∂

∂r2

{(
a2r2 −Ar3

2 − ξr2
1r2 +

P

2r2
+
P ′eff

2
r2

)
Q

− ∂

∂r2

[
1
2
(
P + P ′effr

2
2

)
Q

]}
· (29)

For time t → ∞, the system reaches the steady state.
Then equation (29) is reduced to ∂Q (r1, r2; t) /∂t = 0.
The steady state distribution function Q (r1, r2) can be
calculated directly if the mean field theory is adopted with
ξ r2

2r1 ≈ ξ
〈
r2
2

〉
r1 and ξ r2

1r2 ≈ ξ
〈
r2
1

〉
r2 in equation (29).

Thus one has

Q (r1, r2) = Nr1r2
(
P + P ′effr

2
1

)β1 (
P + P ′effr

2
2

)β2

× exp
[
−α1

(
r2
1 + r2

2

)]
(30)

where N is the normalization constant, and

α1 = A/P ′eff

β1 =
(
a1 − ξ

〈
r2
2

〉
+AP/P ′eff

)/
P ′eff − 1

β2 =
(
a2 − ξ

〈
r2
1

〉
+AP/P ′eff

)/
P ′eff − 1. (31)

Then the mean 〈I1〉 , 〈I2〉 , variance λ11 (0) and the effec-
tive eigenvalue λ11

eff of the steady state laser intensity can
be easily calculated from equation (30) with [23]

〈Ini 〉 =
∫ ∞

0

r2n
i Qs (r1, r2) dr1dr2 (i, j = 1, 2) (32)

λ11 (0) =
〈
I2
1

〉/
〈I1〉

2 − 1 (33)

and

λ11
eff =

2P 〈I1〉
〈I2

1 〉 − 〈I1〉
2 · (34)
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Fig. 4. The intensity variance λ11 (0) and effective eigenvalue
λ11

eff of the two-mode dye laser as a function of the average in-
tensity 〈I〉 = 〈I1〉+〈I2〉 where λ11 (0) , λ11

eff , and 〈I〉 are dimen-
sionless. The parameters are obtained from references [22,23]
and in dimensionless unit: P ′ = 240, P = 1, A = 1, τ = 0.2.
(• • •) experimental measurements [22,23]; (—) predictions of
decoupling theory of equations (33, 34). (a) λ11 (0); (b) λ11

eff .

The theoretical predictions of equations (33, 34) and ex-
perimental measurements [22,23] of the variance λ11 (0)
and effective eigenvalue λ11

eff of the two-mode dye laser in-
tensities I1 and I2 are plotted in Figure 4. Due to the
conversion of the experimental data in references [22,23],
the theoretical results from equations (33, 34) need to be
shifted certain amount to the left. After this correction,
good agreement between the decoupling theory and the
experimental measurements is obtained.

The intensity fluctuation λ11 (0) and the eigenvalue
λ11

eff of the two-mode dye laser are plotted in Figure 5 for
different values of the noise correlation time τ . It is clear
that the behavior of the curves of λ11 (0) and λ11

eff is sim-
ilar to that for one-mode dye laser. This means that the
noise color can also suppress the fluctuations in a coupled
nonlinear dynamical system.

6 Discussion

A two-dimensional decoupling theory is developed when
colored noise is included in a nonlinear dynamical system.
When the theory is applied to a single mode dye laser
system, the laser field can be separated into two parts

0

100

200

300

0

30

60

90

120

10
2

10
110

0
10

-1
10

-2

(b)

λ
1
1

e
ff

< I>=<I
1
>+<I

2
>

10
1

10
2

10
0

10
-1

10
-2

(a)

λ
1
1
(0

)

< I>=<I
1
>+<I

2
>

Fig. 5. The intensity variance λ11 (0) and effective eigenvalue
λ11

eff of the two-mode dye laser as a function of the average
intensity 〈I〉 = 〈I1〉+ 〈I2〉 for different values of the noise cor-
relation time τ where λ11 (0) , λ11

eff , 〈I〉, and τ are dimension-
less. The parameters are dimensionless and chosen as follows:
P ′ = 100, P = 1, A = 1. (—) τ = 0.0; (−−−) τ = 0.2; (· · ·)
τ = 0.5. (a) λ11 (0); (b) λ11

eff .

of amplitude r and phase θ. The variance and the effec-
tive eigenvalue λeff of the laser intensity can be calculated
from the steady state distribution function Qs (r). Also
the variance λ2θ (0) and the power spectrum S (ω) of the
laser field can be obtained from the solution of the phase
diffusion equation Φ (θ, t). When the theory is applied to a
two-mode dye laser system with coupling constant ξ = 2,
the variance λ11 (0) and the effective eigenvalue λ11

eff of the
laser intensity I1 can be calculated from the steady state
distribution function Qs (r1, r2) if the mean field theory is
employed. It is seen that non-zero noise correlation time τ ,
namely the noise color, can reduce the fluctuations in both
intensity and phase of the laser field. From the solution of
the phase diffusion equation (22), it is seen that Φ (θ, t)
tends to zero as the laser system approaches steady state
with t → ∞. This is the reason that only fluctuation of
the steady state laser intensity is concerned in most of the
theoretical and experimental investigations in laser sys-
tems [19,20,22,23].

It should be noted that neglecting terms multiplied
by both noises in equation (5), an ensemble average
amounts to linearization of the equations for small noises.
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Obviously it is not an important approximation since the
results agree so well with simulations and also experiment.

The excellent agreement between decoupling theory,
numerical simulations and experimental measurements in
one-mode and two-mode dye laser systems shows that
the decoupling theory is quite successful in dealing with
two-dimensional and even high-dimensional coupled non-
linear systems. These systems could be optical systems,
electronic and magnetic systems, chemical systems, and
neuronal systems, etc. [4].
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from the National Natural Science Foundation of China (Grant
No. 19874046) is gratefully acknowledged.
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